Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.559
Filter
1.
Cureus ; 16(3): e56358, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38633977

ABSTRACT

Amyloidosis presents a diagnostic challenge, particularly when concomitant with severe conditions like acute exacerbations of idiopathic pulmonary fibrosis (IPF). In this report, we detail the case of a 73-year-old patient with acute exacerbation of IPF and simultaneous emergence of cardiac amyloidosis. The patient's clinical journey began with persistent exertional dyspnea, progressing to hypoxemia on admission. Chest CT scans showed extensive ground-glass opacities, consolidations, and pre-existing honeycombing-like cysts and reticular shadows, accompanied by a right-sided pleural effusion. The therapeutic strategy for acute exacerbation of IPF encompassed methylprednisolone pulse therapy, tacrolimus, and nintedanib, augmented with intravenous immunoglobulin and recombinant thrombomodulin. Concurrently, heart failure with preserved ejection fraction was managed with a pharmacological trio: empagliflozin, diuretics, and eplerenone. A hypertrophied heart and low limb voltage prompted an investigation for cardiac amyloidosis, which 99mTechnetium pyrophosphate (99mTc-PYP) scintigraphy confirmed, yielding a probable diagnosis. Following steroid tapering, the patient was discharged home. This case prompted an investigation into the potential role of amyloidosis in pulmonary pathology. Our retrospective review of 10 patients, including four with cardiac amyloidosis, who underwent 99mTc-PYP scintigraphy, revealed a nonsignificant yet notable trend of increased pulmonary accumulation in cardiac amyloidosis cases (median (interquartile range): 5.4×104 (5.3-13.1×104) vs. 3.6×104 (2.4-5.1×104), p=0.0667). Notably, the pulmonary counts in this patient exceeded the negative cohort's mean values, hinting at a possible contribution of amyloid deposition to pulmonary pathology. This study, pioneering in evaluating lung field accumulation of 99mTc-PYP in cardiac amyloidosis, may provide novel insights into the influence of amyloidosis on pulmonary conditions.

2.
Cell Mol Life Sci ; 81(1): 187, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635081

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) poses significant challenges due to limited treatment options despite its complex pathogenesis involving cellular and molecular mechanisms. This study investigated the role of transient receptor potential ankyrin 1 (TRPA1) channels in regulating M2 macrophage polarization in IPF progression, potentially offering novel therapeutic targets. Using a bleomycin-induced pulmonary fibrosis model in C57BL/6J mice, we assessed the therapeutic potential of the TRPA1 inhibitor HC-030031. TRPA1 upregulation was observed in fibrotic lungs, correlating with worsened lung function and reduced survival. TRPA1 inhibition mitigated fibrosis severity, evidenced by decreased collagen deposition and restored lung tissue stiffness. Furthermore, TRPA1 blockade reversed aberrant M2 macrophage polarization induced by bleomycin, associated with reduced Smad2 phosphorylation in the TGF-ß1-Smad2 pathway. In vitro studies with THP-1 cells treated with bleomycin and HC-030031 corroborated these findings, highlighting TRPA1's involvement in fibrotic modulation and macrophage polarization control. Overall, targeting TRPA1 channels presents promising therapeutic potential in managing pulmonary fibrosis by reducing pro-fibrotic marker expression, inhibiting M2 macrophage polarization, and diminishing collagen deposition. This study sheds light on a novel avenue for therapeutic intervention in IPF, addressing a critical need in the management of this challenging disease.


Subject(s)
Idiopathic Pulmonary Fibrosis , Macrophages , TRPA1 Cation Channel , Animals , Mice , Acetanilides , Bleomycin , Collagen , Cytoskeletal Proteins , Mice, Inbred C57BL , Purines , TRPA1 Cation Channel/metabolism
3.
Heliyon ; 10(8): e29266, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38655311

ABSTRACT

Background: At the beginning of 21st century, reclassification of fibrosing interstitial lung diseases (ILD) scored academic concerning, and then propelled development. Decade before, pifenidone and nintedanib were approved for idiopathic pulmonary fibrosis, but no more drugs are yet available. To evaluate the development traits of pirfenidone and nintedanib in fibrosing ILD, including the influential country, institution, authors, keywords, and the major problems or the priorities of the field emerge and evolve, bibliometric analysis was used to summarize and draw scientific knowledge maps. Methods: We confined the words to "pirfenidone", "nintedanib", "pulmonary fibrosis", and "lung disease, interstitial". Publications were retrieved from the Web of Science Core Collection on February 24, 2024 with the search strategies. Citespace and VOSviewer were adopted for bibliometric analysis. Results: For the knowledge map of pirfenidone, a total of 4359 authors from 279 institutions in 58 countries/regions contributed to 538 studies. The United States and Italy are way ahead. Genentech Inc and the University of Turin are the institutions with the strongest influence. AM J RESP CRIT CARE is the maximized influential periodical. Raghu G was the most frequently co-cited scholar. keywords cluster demonstrated that vital capacity, safety, outcome, effectiveness, acute exacerbation, pathway, cell, collagen were the hotspots. The burst timeline of hotspots and references revealed academic transitions of pirfenidone-related studies. About the knowledge map of nintedanib, 3297 authors from 238 institutions in 47 countries/regions published 374 studies. Japan, the United States, and Italy are the most productive countries. Boehringer Ingelheim is the overriding productive institution. New ENGL J MED have important roles in reporting milestones of nintedanib. Richeldi L carried numerous capital publications to support the anti-fibrotic effect of nintedanib. From the network of co-occurrence keywords, idiopathic pulmonary fibrosis, efficacy, and safety were the hotspots. Nintedanib for systemic sclerosis-related ILD and progressive pulmonary fibrosis is the hotspot with sharp evolution recently. Conclusions: We summarized and showed developmental alterations of pirfenidone and nintedanib in fibrosing ILD through bibliographic index-based analysis. Our findings showed just dozen years sharp development period of pirfenidone and nintedanib in ILD, and identifies potential partners for interested researchers. The burst of hotspots demonstrated the evolvement of research priorities and major problems, and we observed the transition of keywords from experimental terms like mouse, bleomycin, cell, pathway, collagen, gene expression, to clinical terms including efficacy, safety, survival, acute exacerbation, and progressive pulmonary fibrosis. In the future, exploration about disparity models of drug administration, differences between early and later initiate anti-fibrotic therapy, both short-term and long-term efficacy of pirfenidone and nintedanib in fibrosing ILD, specifically in connective disease associate ILD would be emphatically concerned by pulmonologists.

4.
Article in English | MEDLINE | ID: mdl-38657143

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is an aging-associated interstitial lung disease resulting from repeated epithelial injury and inadequate epithelial repair. Alveolar type II cells (AEC2) are progenitor cells that maintain epithelial homeostasis and repair the lung after injury. In the current study, we assessed lipid metabolism in AEC2s from human lungs of IPF patients and healthy donors, as well as AEC2s from bleomycin-injured young and old mice. Through single cell RNA sequencing (scRNA-seq), we observed that lipid metabolism-related genes were downregulated in IPF AEC2s and bleomycin-injured mouse AEC2s. Aging aggravated this decrease and hindered recovery of lipid metabolism gene expression in AEC2s after bleomycin injury. Pathway analyses revealed down-regulation of genes related to lipid biosynthesis and fatty acid -oxidation in AEC2s from IPF lungs and bleomycin-injured, aged mouse lungs compared to the respective controls. We confirmed decreased cellular lipid content in AEC2s from IPF lungs and bleomycin-injured, aged mouse lungs using immunofluorescence staining and flow cytometry. We further show that lipid metabolism was associated with AEC2 progenitor function. Lipid supplementation and peroxisome proliferator activated receptor gamma (PPARγ) activation promoted progenitor renewal capacity of both human and mouse AEC2s in 3D organoid cultures. Lipid supplementation also increased AEC2 proliferation and expression of SFTPC in AEC2s. In summary, we identified a lipid metabolism deficiency in AEC2s from lungs of patients with IPF and bleomycin-injured aged mice. Restoration of lipid metabolism homeostasis in AEC2s might promote AEC2 progenitor function and offer new opportunities for therapeutic approaches to IPF. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

5.
Diabetol Metab Syndr ; 16(1): 90, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659065

ABSTRACT

BACKGROUND: It is unclear whether type 1 diabetes (T1D) causes idiopathic pulmonary fibrosis (IPF), despite observational research linking the two conditions. Therefore, our study aimed to examine the causal link between T1D and the likelihood of IPF by employing the Mendelian randomization (MR) technique of two-sample Mendelian randomization. METHODS: Using data from two genome-wide association studies (GWAS) with European ancestry, we performed a two-sample MR analysis. These studies involved 18,856 individuals (6,683 cases and 12,173 controls) for T1D and 198,014 individuals (10,028 cases and 196,986 controls) for IPF. We utilized inverse-variance weighted (IVW) analysis as our main approach to determine the association between the risk of IPF and T1D. To evaluate multidirectionality, the MR-Egger regression test was utilized, whereas heterogeneity was assessed using Cochran's Q test. Additionally, a leave-one-out analysis was performed to assess the reliability of the results. RESULTS: 38 SNPs linked to T1D were employed as instrumental variables (IVs). Multiple MR methods yielded consistent results, and the MR analysis reveals a significant and positive causal impact of T1D on IPF (MR-IVW, odds ratio [OR] = 1.128, 95% confidence interval [CI] 1.034-1.230; P = 0.006). The limitations of the study include the lack of data from non-European groups and the inability to rule out the possibility of small links. Larger MR experiments are necessary to investigate minute impacts. CONCLUSIONS: The results of this study provide evidence that T1D contributes to the onset and advancement of IPF. This finding may provide important insights into the cause of IPF and possible treatments in the future.

6.
Cureus ; 16(3): e56599, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38650778

ABSTRACT

Tension pneumomediastinum with hemodynamic failure is a rare but life-threatening condition. Rapid decompression of the mediastinum by drainage is essential to save the patient's life. This report presents a case of tension pneumomediastinum that developed during conservative management of a pneumomediastinum associated with idiopathic pulmonary fibrosis. Endoscopically guided mediastinal drainage was successfully performed in the emergency situation of tension pneumomediastinum. Using the semi-flexible fiberscope inserted through a subxiphoid approach, the drainage catheter was easily and safely placed at the appropriate site in the mediastinum. Good mediastinal decompression was achieved, and the patient was out of this critical condition.

7.
Sci Prog ; 107(2): 368504241247402, 2024.
Article in English | MEDLINE | ID: mdl-38651330

ABSTRACT

Idiopathic pulmonary fibrosis is a chronic and progressive interstitial lung disease with a poor prognosis. Idiopathic pulmonary fibrosis is characterized by repeated alveolar epithelial damage leading to abnormal repair. The intercellular microenvironment is disturbed, leading to continuous activation of fibroblasts and myofibroblasts, deposition of extracellular matrix, and ultimately fibrosis. Moreover, pulmonary fibrosis was also found as a COVID-19 complication. Currently, two drugs, pirfenidone and nintedanib, are approved for clinical therapy worldwide. However, they can merely slow the disease's progression rather than rescue it. These two drugs have other limitations, such as lack of efficacy, adverse effects, and poor pharmacokinetics. Consequently, a growing number of molecular therapies have been actively developed. Treatment options for IPF are becoming increasingly available. This article reviews the research platform, including cell and animal models involved in molecular therapy studies of idiopathic pulmonary fibrosis as well as the promising therapeutic targets and their development progress during clinical trials. The former includes patient case/control studies, cell models, and animal models. The latter includes transforming growth factor-beta, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factor, lysophosphatidic acid, interleukin-13, Rho-associated coiled-coil forming protein kinase family, and Janus kinases/signal transducers and activators of transcription pathway. We mainly focused on the therapeutic targets that have not only entered clinical trials but were publicly published with their clinical outcomes. Moreover, this work provides an outlook on some promising targets for further validation of their possibilities to cure the disease.


Subject(s)
Idiopathic Pulmonary Fibrosis , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Humans , Animals , Molecular Targeted Therapy/methods , Pyridones/therapeutic use , Indoles/therapeutic use , Indoles/pharmacology , COVID-19 , Disease Models, Animal
8.
Nicotine Tob Res ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38666790

ABSTRACT

INTRODUCTION: In this study, we aimed to systematically explore the relationship between smoking and idiopathic pulmonary fibrosis (IPF). METHODS: The PubMed, Web of Science and Embase databases were searched to systematically identify eligible studies. The Newcastle‒Ottawa Quality Assessment Scale (NOS) was used to evaluate the quality of the selected studies. The pooled odds ratio (OR) and survival hazard ratio (HR) were calculated with a random effects model using Stata 16.0 software. RESULTS: Thirty studies were enrolled. All of the included studies were considered to have intermediate or high quality. Nine studies were suitable for meta-analysis of ORs, and twenty-one studies were suitable for meta-analysis of survival HR. The pooled analysis revealed a significant difference in the risk of IPF between the smoking group and the never smoking group (OR 1.71, 95% CI 1.27-2.30, P < 0.001), indicating that smoking is a risk factor for IPF. When analyzing pooled survival HRs, never smoking was compared to former smoking or current smoking. Former smoking was shown to be a poor prognostic factor for IPF (HR 1.43, 95% CI 1.18-1.74, P < 0.001), but current smoking was not a significant factor. CONCLUSIONS: Our results indicated that smoking is a risk factor for IPF patients. IMPLICATIONS: In this study, we mainly concluded that smoking is a risk factor for IPF and that former smoking is a poor prognostic factor for IPF. To our knowledge, this is the first meta-analysis report focusing on the association between smoking per se and IPF. Through our current study, we hope to further raise awareness of the relationship between smoking and IPF.

9.
Noncoding RNA ; 10(2)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38668384

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease marked by abnormal accumulation of extracellular matrix (ECM) due to dysregulated expression of various RNAs in pulmonary fibroblasts. This study utilized RNA-seq data meta-analysis to explore the regulatory network of hub long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in IPF fibroblasts. The meta-analysis unveiled 584 differentially expressed mRNAs (DEmRNA) and 75 differentially expressed lncRNAs (DElncRNA) in lung fibroblasts from IPF. Among these, BCL6, EFNB1, EPHB2, FOXO1, FOXO3, GNAI1, IRF4, PIK3R1, and RXRA were identified as hub mRNAs, while AC008708.1, AC091806.1, AL442071.1, FAM111A-DT, and LINC01989 were designated as hub lncRNAs. Functional characterization revealed involvement in TGF-ß, PI3K, FOXO, and MAPK signaling pathways. Additionally, this study identified regulatory interactions between sequences of hub mRNAs and lncRNAs. In summary, the findings suggest that AC008708.1, AC091806.1, FAM111A-DT, LINC01989, and AL442071.1 lncRNAs can regulate BCL6, EFNB1, EPHB2, FOXO1, FOXO3, GNAI1, IRF4, PIK3R1, and RXRA mRNAs in fibroblasts bearing IPF and contribute to fibrosis by modulating crucial signaling pathways such as FoxO signaling, chemical carcinogenesis, longevity regulatory pathways, non-small cell lung cancer, and AMPK signaling pathways.

10.
Pharmacol Res ; 203: 107178, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38583686

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is one of the most fatal chronic interstitial lung diseases with unknown pathogenesis, current treatments cannot truly reverse the progression of the disease. Pulmonary macrophages, especially bone marrow derived pro-fibrotic macrophages, secrete multiple kinds of profibrotic mediators (SPP1, CD206, CD163, IL-10, CCL18…), thus further promote myofibroblast activation and fibrosis procession. IL20Rb is a cell-surface receptor that belongs to IL-20 family. The role of IL20Rb in macrophage activation and pulmonary fibrosis remains unclear. In this study, we established a bleomycin-induced pulmonary fibrosis model, used IL4/13-inducing THP1 cells to induce profibrotic macrophage (M2-like phenotype) polarization models. We found that IL20Rb is upregulated in the progression of pulmonary fibrosis, and its absence can alleviate the progression of pulmonary fibrosis. In addition, we demonstrated that IL20Rb promote the activation of bone marrow derived profibrotic macrophages by regulating the Jak2/Stat3 and Pi3k/Akt signaling pathways. In terms of therapeutic strategy, we used IL20Rb neutralizing antibodies for animal administration, which was found to alleviate the progression of IPF. Our results suggest that IL20Rb plays a profibrotic role by promoting profibrotic macrophage polarization, and IL20Rb may become a potential therapeutic target for IPF. Neutralizing antibodies against IL20Rb may become a potential drug for the clinical treatment of IPF.

11.
Sci Rep ; 14(1): 8857, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38632477

ABSTRACT

The progression of idiopathic pulmonary fibrosis (IPF) is assessed through serial monitoring of forced vital capacity (FVC). Currently, data regarding the clinical significance of longitudinal changes in diffusing capacity for carbon monoxide (DLCO) is lacking. We investigated the prognostic implications of a 1-year decline in DLCO in 319 patients newly diagnosed with IPF at a tertiary hospital between January 2010 and December 2020. Changes in FVC and DLCO over the first year after the initial diagnosis were reviewed; a decline in FVC ≥ 5% and DLCO ≥ 10% predicted were considered significant changes. During the first year after diagnosis, a significant decline in FVC and DLCO was observed in 101 (31.7%) and 64 (20.1%) patients, respectively. Multivariable analysis showed that a 1-year decline in FVC ≥ 5% predicted (aHR 2.74, 95% CI 1.88-4.00) and 1-year decline in DLCO ≥ 10% predicted (aHR 2.31, 95% CI 1.47-3.62) were independently associated with a higher risk of subsequent mortality. The prognostic impact of a decline in DLCO remained significant regardless of changes in FVC, presence of emphysema, or radiographic indications of pulmonary hypertension. Therefore, serial monitoring of DLCO should be recommended because it may offer additional prognostic information compared with monitoring of FVC alone.


Subject(s)
Idiopathic Pulmonary Fibrosis , Pulmonary Emphysema , Humans , Prognosis , Disease Progression , Vital Capacity , Lung
12.
AAPS PharmSciTech ; 25(4): 78, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589751

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease that has been well-reported in the medical literature. Its incidence has risen, particularly in light of the recent COVID-19 pandemic. Conventionally, IPF is treated with antifibrotic drugs-pirfenidone and nintedanib-along with other drugs for symptomatic treatments, including corticosteroids, immunosuppressants, and bronchodilators based on individual requirements. Several drugs and biologicals such as fluorofenidone, thymoquinone, amikacin, paclitaxel nifuroxazide, STAT3, and siRNA have recently been evaluated for IPF treatment that reduces collagen formation and cell proliferation in the lung. There has been a great deal of research into various treatment options for pulmonary fibrosis using advanced delivery systems such as liposomal-based nanocarriers, chitosan nanoparticles, PLGA nanoparticles, solid lipid nanocarriers, and other nanoformulations such as metal nanoparticles, nanocrystals, cubosomes, magnetic nanospheres, and polymeric micelles. Several clinical trials are also ongoing for advanced IPF treatments. This article elaborates on the pathophysiology of IPF, its risk factors, and different advanced drug delivery systems for treating IPF. Although extensive preclinical data is available for these delivery systems, the clinical performance and scale-up studies would decide their commercial translation.


Subject(s)
Idiopathic Pulmonary Fibrosis , Nanoparticles , Humans , Pandemics , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/chemically induced , Lung , Drug Delivery Systems , Pyridones/therapeutic use
14.
Best Pract Res Clin Rheumatol ; : 101945, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38627168

ABSTRACT

Fibrosis is commonly associated with chronic rheumatic diseases, and causes substantial morbidity and mortality. Treatment of fibrosis is extremely challenging but is badly needed, as approved antifibrotic therapies fibrosis do not halt its progression, which will be discussed with a focus on pulmonary fibrosis. Findings from recent studies indicate several therapeutic targets for treating fibrosis. Interleukin-11 is emerging as a fibrogenic cytokine whose activity can be blocked with neutralizing monoclonal antibodies. Fibroblast activation protein (FAP) is highly expressed by activated fibroblasts in inflammatory and fibrotic tissues. Targeting FAP with different modalities has been extensively explored as adjunct treatment for cancer, which can also apply to treating fibrosis in rheumatic diseases.

15.
Respir Investig ; 62(3): 465-480, 2024 May.
Article in English | MEDLINE | ID: mdl-38564878

ABSTRACT

While idiopathic interstitial pneumonia (IIP) centering on idiopathic pulmonary fibrosis (IPF) is the most prevalent interstitial lung disease (ILD), especially in the older adult population, connective tissue disease (CTD)-related ILD is the second most prevalent ILD. The pathogenesis of IPF is primarily fibrosis, whereas that of other ILDs, particularly CTD-ILD, is mainly inflammation. Therefore, a precise diagnosis is crucial for selecting appropriate treatments, such as antifibrotic or immunosuppressive agents. In addition, some patients with IIP have CTD-related features, such as arthritis and skin eruption, but do not meet the criteria for any CTD, this is referred to as interstitial pneumonia with autoimmune features (IPAF). IPAF is closely associated with idiopathic nonspecific interstitial pneumonia (iNSIP) and cryptogenic organizing pneumonia (COP). Furthermore, patients with iNSIP or those with NSIP with OP overlap frequently develop polymyositis/dermatomyositis after the diagnosis of IIP. Acute exacerbation of ILD, the most common cause of death, occurs more frequently in patients with IPF than in those with other ILDs. Although acute exacerbation of CTD-ILD occurs at a low rate of incidence, patients with rheumatoid arthritis, microscopic polyangiitis, or systemic sclerosis experience more acute exacerbation of CTD-ILD than those with other CTD. In this review, the features of each IIP, focusing on CTD-related signatures, are summarized, and the pathogenesis and appropriate treatments to improve the prognoses of patients with various ILDs are discussed.


Subject(s)
Connective Tissue Diseases , Idiopathic Interstitial Pneumonias , Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Humans , Aged , Lung Diseases, Interstitial/diagnosis , Idiopathic Interstitial Pneumonias/complications , Idiopathic Interstitial Pneumonias/diagnosis , Idiopathic Pulmonary Fibrosis/complications , Connective Tissue Diseases/complications , Connective Tissue Diseases/diagnosis , Prognosis
16.
Respir Investig ; 62(3): 488-493, 2024 May.
Article in English | MEDLINE | ID: mdl-38579411

ABSTRACT

BACKGROUND: Acute exacerbations (AEs) of fibrotic idiopathic interstitial pneumonia (fIIP) that require hospitalization occur in some patients. During hospitalization, these patients can develop hospital-acquired pneumonia (HAP), a common hospital-acquired infection with a high mortality rate. However, the characteristics of HAP in AE-fIIP remain unknown. The purpose of this study was to determine the incidence, causative pathogens, and outcomes of HAP in patients with AE-fIIP. METHODS: The medical records of consecutive patients who were hospitalized with AE-fIIP from January 2008 to December 2019 were analyzed for the incidence, causative pathogen, and survival of HAP. The records of patients with an obvious infection-triggered AE were excluded from analysis. RESULTS: There were 128 patients with AE-fIIP (89 with idiopathic pulmonary fibrosis [IPF] and 39 with non-IPF fIIP) who were hospitalized a total of 155 times (111 with IPF and 44 with non-IPF fIIP). HAP occurred in 49 patients (40 with IPF and 9 with non-IPF fIIP). The incidence and the in-hospital mortality rates of HAP in patients with AE-fIIP were high, at 32.2% and 48.9%, respectively. Corynebacterium spp. was the most common causative pathogen, which was followed by human cytomegalovirus (HCMV). CONCLUSIONS: The incidence and the in-hospital mortality rates of HAP in patients with AE-fIIP are high. To improve their survival, patients with fIIP who had AEs and HAP should receive prompt empirical treatment for possible infections with Corynebacterium spp. and testing for HCMV.


Subject(s)
Hamman-Rich Syndrome , Idiopathic Interstitial Pneumonias , Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Pneumonia , Humans , Incidence , Idiopathic Interstitial Pneumonias/therapy , Lung Diseases, Interstitial/epidemiology , Lung Diseases, Interstitial/etiology , Hospitals , Disease Progression , Retrospective Studies
18.
Heart Lung ; 67: 1-4, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38569435

ABSTRACT

BACKGROUND: Few studies have investigated the prevalence of pathogens in patients with acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF), specifically, the interactions between respiratory pathogens and AE-IPF during the coronavirus disease 2019 (COVID-19) pandemic. OBJECTIVES: We aimed to analyze pathogens in patients with AE-IPF between September 2020 and December 2022. METHODS: This retrospective observational study was conducted at our hospital between September 2020 and December 2022. In patients with AE-IPF, pre-hospitalization polymerase chain reaction (PCR) tests for respiratory pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), were performed using multiplex PCR or Smart Gene assay with nasopharyngeal swab specimens. Microbiological assays, including Gram staining, sputum cultures, blood cultures, and urinary antigen tests for Streptococcus pneumoniae and Legionella pneumophila, were also performed. RESULTS: Forty-nine patients with AE-IPF were included. The median age was 75 years old and 42 (86 %) were male. Only one of the 49 patients (2 %) was positive for SARS-CoV-2. Two of 28 patients (7 %) were positive for human rhinovirus/enterovirus. No bacteria were detected in sputum culture, blood culture, or urinary antigen tests. CONCLUSIONS: The detection frequency of SARS-CoV-2 infection in patients with AE-IPF was lower than that of human rhinovirus/enterovirus. Continuous analysis for the presence of pathogens is necessary for appropriate infection control because respiratory viruses may increase as the coronavirus pandemic subsides.

19.
bioRxiv ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38559112

ABSTRACT

Investigating the molecular, cellular, and tissue-level changes caused by disease, and the effects of pharmacological treatments across these biological scales, necessitates the use of multiscale computational modeling in combination with experimentation. Many diseases dynamically alter the tissue microenvironment in ways that trigger microvascular network remodeling, which leads to the expansion or regression of microvessel networks. When microvessels undergo remodeling in idiopathic pulmonary fibrosis (IPF), functional gas exchange is impaired due to loss of alveolar structures and lung function declines. Here, we integrated a multiscale computational model with independent experiments to investigate how combinations of biomechanical and biochemical cues in IPF alter cell fate decisions leading to microvascular remodeling. Our computational model predicted that extracellular matrix (ECM) stiffening reduced microvessel area, which was accompanied by physical uncoupling of endothelial cell (ECs) and pericytes, the cells that comprise microvessels. Nintedanib, an FDA-approved drug for treating IPF, was predicted to further potentiate microvessel regression by decreasing the percentage of quiescent pericytes while increasing the percentage of pericytes undergoing pericyte-myofibroblast transition (PMT) in high ECM stiffnesses. Importantly, the model suggested that YAP/TAZ inhibition may overcome the deleterious effects of nintedanib by promoting EC-pericyte coupling and maintaining microvessel homeostasis. Overall, our combination of computational and experimental modeling can explain how cell decisions affect tissue changes during disease and in response to treatments.

20.
Sci Rep ; 14(1): 7805, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565856

ABSTRACT

Given the pleiotropic effects of statins beyond their lipid-lowering effects, there have been attempts to evaluate the role of statin therapy in IPF, but they have shown inconclusive results. Data from the National Health Insurance Service (NHIS) database of South Korea were used to investigate the effects of statin therapy on IPF. The IPF cohort consisted of a total of 10,568 patients who were newly diagnosed with IPF between 2010 and 2017. These patients were then matched in a 1:3 ratio to 31,704 subjects from a control cohort without IPF, with matching based on age and sex. A case-control study was performed to evaluate the association between statin use and the risk for IPF, and the multivariable analysis revealed that statin use was associated with a lower risk for IPF (adjusted OR 0.847, 95% CI 0.800-0.898). Using the IPF cohort, we also evaluated whether statin use at the time of diagnosis was associated with future clinical outcomes. The statin use at the time of IPF diagnosis was associated with improved overall survival (adjusted HR 0.779, 95% CI 0.709-0.856). Further prospective studies are needed to clarify the role of statin therapy in IPF.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Idiopathic Pulmonary Fibrosis , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Case-Control Studies , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/epidemiology , Republic of Korea/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...